碳化硅如何改进开关电源转换器设计

在设计电源转换器时,碳化硅 (SiC)等宽带隙 (WBG) 技术现在是组件选择过程中的现实选择。650V SiC MOSFET 的推出使其对于以前未考虑过的应用更具吸引力。

它们在高效硬开关拓扑中具有卓越的鲁棒性,使其成为实现千瓦级电源解决方案的功率因数校正 (PFC) 级的理想选择。而且,由于支持更高的开关频率,更小的磁性元件成为一种选择,为许多设计带来可喜的体积减小。

天下没有的午餐 虽然好处很多,但仅仅通过将SiC MOSFET放入去除硅等效物留下的间隙中并不能实现这些好处。工程师需要花时间了解它们的特征,以充分利用变革,同时还要了解它们不同的局限性和故障模式。CoolSiC? 器件中体二极管的正向电压是硅 MOSFET 的四倍。因此,LLC 转换器在轻负载时效率可能会下降 0.5%。PFC 拓扑的高效率还可以通过通道而不是体二极管升压来实现。

在工作温度下,导通电阻与硅相当 一个关键的比较参数是导通电阻 RDS(on)。硅 MOSFET 表面上看起来比 SiC 更好,但由于其倍增系数 (κ) 较低,84 mΩ CoolSiC? 器件在 100°C 下可实现与 57 mΩ CoolMOS? 器件相同的 RDS(on)(图 1)。CoolSiC 还提供比硅 MOSFET 更高的击穿电压 V(BR)DSS,这对于在低温环境下启动的应用非常有用。

碳化硅如何改进开关电源转换器设计


图 1:Cool-SiC? 的温度对 RDS(on) 的影响低于 CoolMOS?,因此在典型工作温度下具有相似的导通电阻。 

EiceDRIVER? 系列仍然是 CoolSiC? MOSFET 的理想伴侣。然而,为了实现数据表中定义的低 RDS(on),需要 18V 的栅极电压 (VGS),而不是硅 MOSFET 的典型 12V。如果选择新的栅极驱动器,值得选择具有 13 V 欠压锁定功能的栅极驱动器,以确保目标应用异常条件下的安全运行。SiC 的另一个优点是温度对 25 °C 至 150 °C 之间传输特性的影响有限(图 2)。

避免负栅极电压 负栅极电压可能会导致 SiC MOSFET 的长期退化,从而导致潜在故障。因此,设计工程师应确保 VGS 不会在超过 15 ns 的时间内降至 -2 V 以下。如果发生这种情况,可能会导致栅极阈值电压 (VGS(th)) 发生漂移,从而在应用的整个生命周期内增加 RDS(on)。终,这会导致来之不易的系统效率提升下降,而这正是许多情况下选择 SiC 的关键原因。

碳化硅如何改进开关电源转换器设计


图 2:25°C(左)和 150°C(右)的传输特性对 SiC 器件的影响明显低于硅 MOSFET。

高值电阻器通常与硅 MOSFET 一起使用,以对抗负 VGS,从而减慢 di/dt 和 dv/dt。然而,对于 SiC 器件,方法是在栅极和源极之间插入二极管电压钳位。如果负电压纯粹是电感问题,强烈建议选择具有开尔文源的 CoolSiC? 器件。这可能导致 EON 损耗比没有它的设备低三倍(图 3)。

碳化硅如何改进开关电源转换器设计


图 3:为了避免 SiC MOSFET 的栅极变为负值,应考虑二极管钳位、单独的公共端和开尔文源。 

效率超过 99% CoolSiC? MOSFET 的另一个优势是在漏极-源极电压 VDS 高于 50V 左右时具有更高的输出电容 COSS。这可以降低过冲水平,而无需实现栅极电阻。SiC 技术的 QOSS 行为也有利于硬谐振开关拓扑,因为需要更少的放电,这会影响 CCM 图腾柱 PFC 中的 Eon 损耗。使用 48 mΩ 器件,3.3 kW CCM 图腾柱 PFC 的效率可达到 99% 以上(图 4),其中在双升压 PFC 设计中使用 CoolMOS? 的效率峰值可达 98.85%。而且,尽管 SiC MOSFET 的成本较高,但基于 SiC 的设计更具成本竞争力。

碳化硅如何改进开关电源转换器设计


图 4:即使是 107 mΩ CoolSiC CCM 图腾柱 PFC 的效率也接近 99%,基本上优于的 CoolMOS? 双升压 PFC 方法。

分享文章。发布者:oel-月,转转请注明出处:https://www.oel.cn/archives/5448

(0)
oel-月的头像oel-月
上一篇 2024年4月3日 上午11:50
下一篇 2024年4月10日 下午5:18

相关推荐

  • DC/DC转换电路设计10大法则

    DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源…

    2024年1月29日
    00
  • 工业交换机选购标准是什么?

    工业交换机是专门针对灵活多变的工业应用需求而设计的,旨在为工业以太网通讯提供高性价比的解决方案。当我们选购工业交换机时,有哪些选购标准呢? 工业交换机选购标准 1、考虑到工作环境的因素 这些内容包括温度范围、电磁兼容性(EMC)、防护等级、安装方式和电源等方面的相关信息。商用以太网交换机的设计并不适用于极限温度、高振动、以及强电磁噪声等工业环境。 2、应该选…

    技术分享 2023年10月20日
    00
  • 常见的储能材料主要有哪些?

    储能材料,具有能量储存特性的材料,它不仅能存储能量,并且能使能量转化,以供需用。目前所知的储能材料主要包括以下几类: 锂离子电池:在电动汽车、笔记本电脑、智能手机等领域得到广泛应用,具有高能量密度、长循环寿命等特点。 钠离子电池:与锂离子电池相比钠离子电池具有较低成本、较高容量等优势,但目前研究仍处于初级阶段。 金属空气电池:具有高能量密度、长循环寿命、低成…

    技术分享 2023年12月12日
    00
  • 三类同步电机特色各异的性能与应用

    电机品种繁多,普遍有两种分类方式:按照控制方式可以分为伺服电机步进电机和力矩电机等;按照驱动方式分为直流电机和交流电机,其中交流电机按照转子和定子转动是否同步可以分为同步电机和异步电机。 同步电机作为交流电机中重要的门类,在相当多领域都有其应用。在工业领域高精度应用里同步电机备受青睐,现在热门的电动汽车领域也有不少它的身影,如比亚迪电动汽车的电机系统就偏爱同…

    2023年12月27日
    00
  • 77GHz 雷达传感器在汽车和工业中的应用

    在过去十年中,雷达传感器已逐渐发展成一种成熟的传感方式,适用于汽车和工业应用。由于雷达技术有助于实现需要具备远距离、环境弹性和更高传感分辨率的设计,因而非常适合应用在高级驾驶辅助系统 (ADAS) 中,例如碰撞检测和液位检测。 随着推出基于互补金属氧化物半导体 (CMOS) 的片上系统 (SoC) …

    2023年10月9日
    00

联系我们

400-1155-216

在线咨询: QQ交谈

邮件:9792618@qq.com

工作时间:周一至周五,9:00-18:00,节假日休息

关注公众号