RF 噪声系数规范

在 RF 应用中,我们通常处理非常微弱的信号,这些信号很容易被我们电路中产生的噪声所掩盖。噪声电平终决定了接收器能够可靠检测到的信号。因此,RF 组件和系统的噪声特性至关重要。在我们关于噪声系数的介绍性文章中,我们了解了如何使用该指标来表征 RF 组件的噪声性能。

现在我们已经熟悉了基本概念,我们可以仔细研究一下噪声系数的定义,并讨论一些有时不够突出的细微之处。

噪声系数定义和噪声因数方程
电路的噪声因数 (F) 可定义为:
F=NoGNiF=NoGNi 等式 1
在哪里:
No 是输出端的总噪声,包括电路内部噪声源的影响和来自源阻抗的噪声
N i 是源阻抗在电路输入端产生的噪声
G是阶段的功率增益

虽然这个解释是正确的,而且实际上在一些参考资料中也提供了类似的解释,例如Paul R. Gray广泛使用的 教科书“模拟集成电路的分析与设计”第 4 版,但它并没有提供所有的细节噪声系数定义。根据IEEE 定义,N i 是源电阻器在 T 0  = 290 K°(或 16.85 °C)温度下的可用热噪声功率。这个温度比舒适的室温要低一点;但是,有时在 RF 工作中将其称为室温。

此外,IEEE 定义指出,No是 设备输出端的可用噪声功率,G 是设备的可用功率增益。这里的关键点是规范的参考温度 T 0  = 290 K°,以及用于描述方程式 N i、 N o和 G 的所有三个参数的描述符“可用”。在本文的其余部分,我们将详细讨论“T 0  = 290 K 时的可用噪声功率”的含义。

可用噪声功率

热激发电荷载流子的随机运动表现为电阻器中的噪声。噪声电阻器可以通过添加与无噪声电阻器串联的噪声电压源来建模,如下图 1 所示。

RF 噪声系数规范


图 1. 噪声电阻示例图以及添加与无噪声电阻串联的噪声电压源。 

噪声电压源的PSD(功率谱密度)为 ( overline {V_n^2} = 4 space kTRB),其中:ˉ ˉˉˉˉˉ ˉ V 2 n =4kTRB Vn2ˉ=4 kTRB

k 是玻尔兹曼常数 (1.38 × 10 -23  Joules/Kelvin)
T 是开尔文温度
B 是考虑的带宽(赫兹)

在噪声系数定义中,N i 是源电阻的可用噪声功率。现在的问题是,图 1(b) 中的电路可以提供的噪声功率是多少?根据基本电路理论,我们知道当负载电阻等于源电阻时传输的功率。因此,可以使用以下电路(图 2)找出源电阻 R S的可用噪声功率。

RF 噪声系数规范


图 2. 用于查找源电阻器可用噪声功率的电路图。

请记住,我们 在上图中使用了噪声源的RMS(均方根)值。由于一半的噪声电压出现在负载两端,因此传输到匹配负载的噪声功率 R L  = R S可以通过以下公式找到:

P L = V 2 L R L=( V n ,均方根米秒2) 2×1大号_=4 k T R S B 4× 1秒_=k T BPL=VL2RL=(Vn,rms2)2×1RL=4kTRSB4×1RS=kTB

等式 2。

这是噪声系数计算的重要结果。请注意,可用噪声功率与电阻值无关。无论是 1 mΩ 电阻还是 1 MΩ 电阻,可用的噪声功率都是 kTB。在 1 Hz 带宽中,可用噪声功率为 kT。噪声系数定义基于 T 0  = 290 K 时的可用噪声功率 。以 dB表示 kT 0时,此参考温度下的可用噪声功率为 -174 dBm/Hz,计算如下:

10 l o g ( k T 0 ) = 10 l o g ( 1.38 × 10 ? 23 × 290 ) ≈ ? 174 d B m 10log(kT0)=10log(1.38×10?23×290)≈?174 dBm

噪声系数指定添加噪声的相对量

由于噪声系数定义基于 N i  = kT 0 B,因此它指定了相对于 N i添加到信号中的噪声的相对量。考虑我们在上一篇文章中推导出的以下噪声系数方程:

F = 1 + N o ( a d d e d ) N o () _ _ _ _ _F=1+No(added)No(source)

这里,No (source) 是源于源阻抗的输出噪声的一部分;No (added) 是电路本身产生的输出噪声的一部分——不包括源电阻贡献。注意 N o(source)  = kT 0 BG,我们得到等式 3:

F = 1 + N o ( a d d e d ) k T 0 B GF=1+No(added)kT0BG

等式 3。 

为了更好地形象化上述等式的噪声项,请考虑图 3 中的下图,有时称为“噪声线”。

RF 噪声系数规范
RF 噪声系数规范


图 3. 显示噪声线的图。

在上图中,总输出噪声 No 相对于源电阻温度 T 绘制。如果 R S 无噪声(或 T = 0 K),输出端出现的噪声将是被测设备或 No o(added)。当我们提高 R S的温度时,它的噪声贡献会增加。对应于 T = T 0的噪声系数度量实际上指定了 R S 在 T 0时贡献的输出噪声(即 kT 0 BG)与被测设备的输出噪声 (No (added) ) 之比。例如,如果系统的噪声系数为 F = 2(或 NF = 3 dB),我们知道 No (added) 等于 kT 0 BG。

如图所示,R S 噪声与 No (added)的比值 不是恒定的,而是随 T 变化的。因此,如果 R S 处于 T 0以外的温度,我们不能直接使用噪声系数方程来计算找到输出噪声。 相反,我们应该首先找到来自 DUT(被测设备)的噪声,加上感兴趣温度下 R S的噪声,计算总输出噪声。

我们还可以通过将分数的分子和分母除以级的功率增益,根据输入参考噪声值来表达等式 3。这产生了等式 4:

F = 1 + N i (加d e d ) N i _F=1+Ni(added)Ni

等式 4。

在这个等式中,N i(added) 是由 DUT 贡献的输入参考噪声,N i 是源在 290 K 时的可用噪声功率。同样,如果 F = 2,则输入参考噪声由DUT 等于 N i  = kT 0 B。让我们看一个例子来阐明这些概念。

示例:使用噪声系数方程

放大器的噪声系数、带宽和增益分别为:

噪声系数 = 2.55 分贝 
B = 10 兆赫
增益 = 5.97 分贝

假设可用输入噪声为 kT A B,找出两种不同情况下的输出噪声:1 – T A  = 290 K 和 2 – T A  = 150 K。 

我们首先找到噪声系数和增益的线性值: 

F = 10 N F 10= 10 0.255 = 1.8F=10NF10=100.255=1.8
G = 10 G a n 10 _= 10 0.597 = 3.95G=10Gain10=100.597=3.95 

由于噪声系数的定义假设输入噪声是 T = 290 K 时的可用噪声功率,我们可以直接从等式 1 求出该温度下的输出噪声:

N o = N i FG=k T 0 B×FGNo=NiFG=kT0B×FG

以分贝表示右侧,我们有: 

否_=10 l o g ( k T 0 ) + 10 l o g ( B F G )=? 174 d B m / H z + 10 l o g ( 10 × 10 6 × 1.8 × 3.95 ) =? 95.48分贝米_ No=10log(kT0)+10log(BFG)=?174 dBm/Hz+10log(10×106×1.8×3.95)=?95.48 dBm 

对于 T A  = 150 K,我们不能直接使用噪声系数方程。然而,噪声系数方程可用于计算系统产生的噪声。将 N i = kT 0 B 代入等式 4,系统产生的输入参考噪声为: 

N i ( a d d e d ) =(F?1)k T 0 BNi(added)=(F?1)kT0B

当 F = 1.8 时,我们得到 N i(added)  = 0.8kT 0 B。因此,输入端的总噪声为:

N i ( t o t a l ) = N i ( a d d e d ) +k T A B= 0.8 k T 0 B + k T A BNi(total)=Ni(added)+kTAB=0.8kT0B+kTAB 

将该值乘以系统增益 G,即可得到总输出噪声功率。在下面的等式中,我将 T A写成 T 0 以简化计算:

没有(总计)_ _ _ _ _=G ( 0.8 k T 0 B + k T A T 0 T 0乙)=G k T 0 B ( 0.8 + 150 290)No(total)=G(0.8kT0B+kTAT0T0B)=GkT0B(0.8+150290) 

以分贝表示右侧,我们有:

没有(总计)_ _ _ _ _=10 l o g ( k T 0 ) + 10 l o g ( B G × 1.317 )=? 174 d B m / H z + 10 l o g ( 10 × 10 6 × 3.95 × 1.317 ) =? 96.84分贝米_ No(total)=10log(kT0)+10log(BG×1.317)=?174 dBm/Hz+10log(10×106×3.95×1.317)=?96.84 dBm 

如果不注意噪声系数的定义,可能会将 N i  = k × 150 × B 代入等式 1,这会产生不正确的结果 No =  -98.34 dBm。 

物理温度或噪声温度

在上面的讨论中,我们强调了源电阻 R S的物理温度对我们的 NF 计算的影响。通常情况下,驱动点阻抗 (R S ) 与 DUT 处于相同的物理温度;然而,电路接收到的输入噪声功率高于 kT 0 B。这通常发生在级联系统中,信号链中的每个模块都会增加本底噪声。因此,级联中下游级的输入噪声通常超过 kT 0 B。在这些情况下,我们也无法通过直接应用噪声系数方程来计算输出噪声电平。相反,我们可以先使用 NF 方程来计算电路产生的噪声 (N i(added)),然后使用该信息和输入噪声电平来计算总输出噪声。 此外,定义输入噪声的等效噪声温度 T e也很有帮助。这是可用热噪声功率 (kT e B) 等于输入噪声功率时的温度。若输入噪声功率为N 1,其等效噪声温度为:

T e = N 1 k BTe=N1kB

噪声系数和等效噪声温度是组件噪声特性的可互换表征。在下一篇文章中,我们将查看使用噪声温度概念的示例。

噪声系数指定 SNR 劣化

噪声系数是电路引起的SNR(信噪比)退化的直接量度。这个说法是正确的;然而,它值得更多的解释。让我们再考虑上面讨论的例子。我们假设系统的噪声系数和增益分别为 NF = 2.55 dB 和增益 = 5.97 dB,并假设输入信号功率为 -40 dBm。当 R S 为 T A  = 290 K 时,输入噪声功率为:   

镍_=10 l o g ( k T 0 ) + 10 l o g ( B )=? 174 d B m / H z + 10 l o g ( 10 × 10 6 ) =? 104分贝米_ Ni=10log(kT0)+10log(B)=?174 dBm/Hz+10log(10×106)=?104 dBm

从示例的结果中,我们知道输出噪声功率为 -95.48 dBm。图 4 总结了该示例输入和输出端的信号和噪声功率。

RF 噪声系数规范


图 4. 前面示例的输入和输出端的信号和噪声功率汇总。

输出信号功率由输入信号乘以放大器的功率增益得到。图 4 还提供了输入和输出 SNR,以及 SNR 退化。请注意,SNR i  / SNR o的比值 等于噪声系数 NF = 2.55 dB,这并不奇怪,因为我们知道这个比值实际上是噪声系数的定义。但是,对于 T A  = 150 K的情况呢?在这种情况下,输入噪声为 N i  = -106.86 dBm。图 5 总结了前面示例的结果。

RF 噪声系数规范


图 5. 上述示例的另一个结果汇总。

如图所示,SNR 退化 (SNR i  / SNR o ) 现在大于 NF。这是因为输入噪声低于标准值,使得放大器的噪声贡献更加显着。因此,当输入噪声为 kT 0 B时,噪声系数决定了 SNR 的退化。例如,如果一个电路的噪声系数为 7 dB,并且该模块的输入噪声功率为 kT o B,则输出端的 SNR该块的 7 dB 小于输入 SNR。

分享文章。发布者:oel-月,转转请注明出处:https://www.oel.cn/archives/4874

(0)
oel-月的头像oel-月
上一篇 2024年1月3日 下午5:34
下一篇 2024年1月8日 上午11:55

相关推荐

  • 关于位移传感器的原理及应用

    位移传感器由什么组成 位移传感器的组成结构可以根据不同的工作原理而有所不同。以下是常见的几种位移传感器的组成部分: 1. 光电传感器:– 光源:通常是发光二极管(LED)或激光器,用于发射光束。– 接收器:通常是光敏电阻、光敏二极管或光电二极管,用于接收反射回来的光束。– 放大器和信号处理电路…

    2024年2月5日
    100
  • 混合卫星通信网络是什么

    在卫星通信网络中,根据经过卫星转发器的次数,卫星通信网络又可分为单跳和双跳两种结构。 对于星形网络,各远端地球站可通过单跳链路与中心站直接进行话音和数据的通信,而各远端地球站之间一般都是通过中心站间接地进行通信,因此信号会经历两跳的延迟。 混合卫星通信网络的特点混合卫星通信网络具有以下特点: 1. 广域覆盖:混合卫星通信网络可以提供广域覆盖,包括全球范围、大…

    2024年2月4日
    000
  • 如何使用电子保险丝克服传统保护器件的局限性

    在现代汽车和工业应用中,可靠性至关重要。从汽车域控制器,到工业应用中的计算机数控等产品,无论最终产品是简单还是复杂,如果不能保证可靠性,就很可能损害制造商的声誉。此外,还需要考虑保修维修的成本,甚至是召回产品的成本。然而,电子电路总归都会出现故障,可能是由于外部影响,也可能是由于组件随时间推移性能下降而引起。因此,根据良好的设计实践,建议采用电路保护器件,以…

    2023年12月19日
    200
  • 使用霍尔效应电流传感器简化高压电流检测

    在电动汽车(EV)充电系统和光伏逆变器系统中,电流传感器通过监测分流电阻器上的压降或导体中电流产生的磁场来测量电流。这些高压系统使用电流信息控制和监测电源转换、充电和放电。 霍尔效应电流传感器和基于分流器的电流传感器是最常见的电流检测技术。然而,迄今为止,在高压应用中使用霍尔效应传感器一直存在问题。本文将探讨选择每种拓扑时需要考虑的因素,并重点介绍在高压应用…

    2023年10月10日
    2500
  • 车用氢燃料电池升压DC-DC测试

    氢燃料电池是一种能量生成装置,在燃料氢气用尽之前一直产生能量,而且氢燃料电池的反应物氢气加料时间远远短于动力电池的充电时间,以氢燃料汽车为例,一般充气 5-10 分钟便可续航 1000 公里,与纯电动汽车相比,使用氢燃料电池的电动汽车可以大大缩短动力电池的充电时间,并且还可以大大提高续航里程,当然还有最重要的一点,氢燃料电池的产物是水,是没有污染的,是替代内…

    12小时前
    000

联系我们

400-1155-216

在线咨询: QQ交谈

邮件:9792618@qq.com

工作时间:周一至周五,9:00-18:00,节假日休息

关注公众号